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Abstract The motion of an ideal fluid in a rectangular tank is studied, under conditions in which the tank is sub-
jected to horizontal sinusoidal periodic forcing. A novel technique is presented for solving the problem; it makes
use of a Fourier-series representation in which the time-dependent coefficients are shown to obey a system of forced
nonlinear ordinary differential equations. Time-periodic solutions are computed using further Fourier-series repre-
sentations and Newton’s method to find the doubly subscripted arrays of coefficients. It is shown that the linearized
solution describes the motion reasonably well, except near the regions of linearized resonance. A weakly nonlinear
theory near resonance is presented, but is found to give a poor description of the motion. Extensive nonlinear
results are shown which reveal intricate behaviour near resonance. A method is given for computing the stability
of time-periodic solutions; it reveals that the solution branch corresponding to linearized theory is stable, but that
additional unstable periodic solution branches may also be present. Further quasi-periodic and chaotic solutions are
detected.

Keywords Floquet stability analysis · Horizontal sloshing · Inviscid fluid · Nonlinear resonance structure ·
Periodic and irregular behaviour

1 Introduction

The sloshing of fluid in a tank is a well-studied problem that has applications in a number of practical situations.
As indicated by Virella et al. [1], the problem is relevant to the safety of transporting fluids in tankers; Hermann
and Timokha [2] also stress its relevance to the automotive, aerospace and shipbuilding industries. Fluid sloshing
in road tankers may result in overturning of the vehicle, and resonant movement of fluid within ship cargo tanks is
also of concern. These practical considerations are discussed further in the review article by Ibrahim et al. [3]. They
are reinforced by Frandsen [4], who also discusses the use of fluid-filled tanks to act as dampers on the motion of
city buildings in high winds.

Chester [5] presented a mathematical analysis of the motion of the free surface in a tank of fluid subjected to
horizontal periodic forcing. He identified points of resonance at which the forcing frequency is such that an odd
number of half wavelengths fit along the tank. Linearized theory breaks down at resonance, since it assumes that the
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free-surface disturbances remain small, and Chester carried out a weakly nonlinear analysis near resonance. This
was found by Chester and Bones [6] to be in at least qualitative agreement with experiment. They also suggested that
nonlinearity could lead to unstable periodic solutions, and this has formed some of the motivation for the present
work. Chester and Bones [6] found experimentally that there were parameter regions at which the motion of the
interface became so irregular, where they expected to see sub-harmonic oscillations, that they abandoned further
attempts to record its behaviour.

Ockendon and Ockendon [7] undertook an asymptotic analysis of the horizontal sloshing motion studied by
Chester [5], and obtained a fourth-order nonlinear forced ordinary differential equation describing the motion near
resonance. Their results indicated that the vertical resonant peaks of linearized theory were bent to one side by
the effects of nonlinearity in a frequency-response diagram, so that multiple solutions might be expected near the
resonance value. This is similar to the famous “hardening spring” or “softening spring” responses in the Duffing
equation, as discussed, for example, by Seydel [8, p. 52].

Many authors have since applied weakly nonlinear asymptotic theories to study the behaviour of sloshing motion
near resonance. Hill [9] and Hill and Frandsen [10] retained terms to third order in the wave amplitude and derived
a cubic equation for amplitude in the vicinity of resonance. Three real solutions are possible on one side of the
resonance peak and only one real solution on the other; thus the weakly nonlinear peak bends in the response curve,
giving multiple solutions similar to those found by Ockendon and Ockendon [7]. Hysteresis behaviour is then
possible near resonance, and has been found experimentally for horizontally excited shallow tanks by Gardarsson
and Yeh [11]. Careful local analyses near the first two resonance regions have been carried out by Hermann and
Timokha [2,12]. This work shows additional bifurcation behaviour in the vicinity of resonance. Amundsen et al.
[13] used a forced Korteweg-de Vries approximation to model horizontally forced oscillations in a tank, and showed
subtle and complex behaviour near resonance.

Fully numerical solutions have also been computed for tanks subject to horizontal forcing, vertical forcing
(Faraday resonance), or a combination of both. Bredmose et al. [14] used a Boussinesq formulation of the governing
equations and a finite-difference (method of lines) type scheme with filtering to model the problem mathemati-
cally. They also conducted extensive experiments, for both vertical and horizontal forcing, and showed reasonable
agreement between the theoretical and measured results. For horizontally forced tanks, they observed ‘violent’
unsteady waves of very large amplitude. Frandsen [4] also used a finite-difference scheme to solve for free-surface
motion in horizontally or vertically forced tanks, making use of a time-dependent transformation to map the fluid
region onto a rectangle so that difference approximations could be applied. She computed periodic solutions as
well as highly irregular ones, reminiscent of those evidently encountered experimentally by Chester and Bones
[6]. A somewhat similar approach has also been adopted by Chen and Nokes [15], who used a finite-difference
technique to solve the (viscous) incompressible Navier–Stokes equations after applying a simple transformation
to map the fluid region onto the unit square. They likewise found irregular behaviour of the free surface, under
periodic surge (horizontal) forcing. Viscosity was found to dampen the motion, but evidently did not alter the qual-
itative behaviour. A finite-element solution by Wang and Khoo [16] in the purely inviscid case also gives a similar
outcome.

Numerical solutions with a more practical or engineering focus have been obtained with a variety of methods.
The effects of viscosity and vertical baffles in the tank have been investigated by Celebi and Akyildiz [17] with a
view to reducing the impact of ‘violent’ motion. Armenio and La Rocca [18] used a turbulence code to solve the
Reynolds-averaged viscous equations for flow in a rectangular container, and obtained reasonable agreement with
their experiments. Vertical baffles were again found to reduce wave motion significantly in the tank. Cariou and
Casella [19] undertook a comparative study of a number of different numerical codes for solving sloshing problems,
with the aim of addressing practical questions arising in industrial situations related to the operation of ships and
tankers. They found that the codes were generally reliable for two-dimensional flows, and that fluid viscosity was
not a major factor. Three-dimensional flows were still in need of further work, particularly as a result of the high
demands they make on computer resources. Nevertheless, Liu and Lin [20] have recently obtained solutions for
turbulent flow in three-dimensional geometry, and show computed solutions at different times for violent sloshing
events. These solutions required 265 h of processor time on a high-performance computer.
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Sloshing of an ideal fluid in a horizontally forced rectangular tank 397

Spectral (“modal”) methods have also been used to solve the nonlinear equations for horizontal tank motion.
Faltinsen et al. [21] and Faltinsen and Timokha [22] used a variational formulation of the inviscid irrotational flow
equations with a spectral representation of the solution to Laplace’s equation and computed nonlinear amplitude-
response curves similar to those obtained by the weakly nonlinear theories. In a very thorough theoretical and
experimental study, Ikeda [23] used a spectral technique to solve for the interaction of two liquid-filled tanks in an
elastic structure. He obtained complex response curves in the case of vertical forcing, along with period-doubled
and chaotic oscillations.

In the present paper, a spectral method is likewise used to solve the fully nonlinear equations of motion for the
case of a horizontally excited tank. The technique has much in common with that used by Faltinsen et al. [21] but
makes use of some extra novel features introduced by Forbes, Chen and Trenham [24] and used subsequently by
Forbes and Hocking [25] to study fluid draining from a tank. Details of this solution procedure are outlined in Sect. 3.
This technique allows time-periodic solutions to be computed directly; an approach based on the use of Floquet
theory is presented in Sect. 4 for determining directly the stability of these periodic solutions. This formulation
has the advantage that it permits even highly unstable solutions to be found accurately. It is also amenable to the
derivation of weakly nonlinear solutions near resonance, and this is illustrated in the present problem in Sect. 5.
Results are given in Sect. 6 for stable and unstable periodic nonlinear solutions and also for solutions that display
quasi-periodic or chaotic irregular behaviour of the type remarked on by Chester and Bones [6]. Some concluding
observations are given in Sect. 7.

2 The ideal-fluid model

Consider two-dimensional irrotational flow of an incompressible inviscid fluid. A velocity potential φ exists for the
flow; its gradient gives the velocity vector in the form (u, v) = (∂φ/∂x, ∂φ/∂y). The functions u and v represent
the components of the fluid velocity in the horizontal and vertical directions, respectively. Since the fluid is ideal,
its velocity potential therefore satisfies Laplace’s equation ∇2φ = 0 at each point.

The fluid is situated in a rectangular tank. At rest, the origin of a coordinate system is located on the left wall of
the tank at a height H above the bottom. The undisturbed fluid surface lies along the horizontal x-axis, the bottom
is located on the plane y = −H and the right wall of the tank is at position x = L . The fluid is affected by the
downward acceleration g of gravity acting in the negative y-direction. The situation of interest here, however, is
that in which the tank is subjected to sinusoidal horizontal forcing, with some amplitude A and frequency �.

It is appropriate to non-dimensionalize the problem at this point, and this is accomplished in this paper by refer-
ring all times to the quantity 1/�, choosing g/� as the unit of speed and thus g/�2 as the scale for all lengths.
This particular choice of dimensionless variables has been made so as to allow the freedom for the tank length and
depth to be specified arbitrarily in the new variables, and even to approach infinity. These variables will be used
from now on. In this formulation, there are three dimensionless parameter groups, defined as

ε = �2 A

g
; λ = �2L

g
; β = �2 H

g
. (2.1)

The first parameter ε represents the forcing amplitude of the horizontal motion. The remaining two parameters λ

and β are, respectively, the tank length and depth.
The velocity potential φ satisfies Laplace’s equation within the fluid, and is also subject to kinematic conditions

on each bounding surface. As the fluid is inviscid, it is assumed to slip without hindrance on each boundary, so that

v = 0 on y = −β (2.2)

on the tank bottom. On the left and right tank walls, respectively, it is also the case that

u = ε cos t on x = ε sin t
u = ε cos t on x = λ + ε sin t.

(2.3)
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Fig. 1 A sketch of the dimensionless flow configuration in the non-inertial coordinates (X, y). The interface is taken from an actual
solution with depth β = 1, forcing amplitude ε = 0.03, response amplitude AT = 0.73 (tank length λ = 7.751735). The scale on both
axes is the same, so that this (unstable) periodic solution is as it would appear

The free surface of the fluid is represented by the equation y = η(x, t), and is also subject to the kinematic
constraint

v = ∂η

∂t
+ u

∂η

∂x
on y = η(x, t), (2.4)

since by definition fluid may not cross this surface. It is also necessary to satisfy the dynamic condition that the fluid
pressure at the interface must equal the air pressure there, and from Bernoulli’s equation in the fluid it therefore
follows that

∂φ

∂t
+ 1

2

(
u2 + v2

)
+ η = 0 on y = η(x, t). (2.5)

Following Frandsen [4], Hermann and Timokha [2] and Faltinsen et al. [21], it is now convenient to transform
the problem to a new non-inertial coordinate system (X, y) with its origin fixed on the moving left wall of the
tank. This situation is illustrated in Fig. 1. The required transformation is accomplished by defining the horizontal
coordinate

X = x − ε sin t (2.6)

and making use of the chain rule of calculus. It is also useful to define a perturbation potential �̂ from the original
velocity potential φ by means of the equation

φ(X, y, t) = εX cos t + �̂(X, y, t). (2.7)

It follows that the perturbation potential in (2.7) still satisfies Laplace’s equation

∂2�̂

∂ X2 + ∂2�̂

∂y2 = 0 in 0 < X < λ, −β < y < η(X, t) (2.8)

in the non-inertial coordinate X in (2.6). The bottom condition (2.2) takes the form

∂�̂

∂y
= 0 on y = −β (2.9)

and the two tank side conditions (2.3) become simply

∂�̂

∂ X
= 0 on X = 0, X = λ. (2.10)

The interfacial kinematic condition (2.4) becomes

∂�̂

∂y
= ∂η

∂t
+ ∂�̂

∂ X

∂η

∂ X
on y = η(X, t), (2.11)
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and the dynamic condition (2.5) transforms to

− 1
2ε2 cos2 t − εX sin t + ∂�̂

∂t
+ 1

2

[(
∂�̂

∂ X

)2

+
(

∂�̂

∂y

)2]
+ η = 0 on y = η(x, t) (2.12)

on the interface.
A solution to this nonlinear free-surface problem thus consists of finding the perturbation potential �̂(X, y, t)

and the time-dependent surface elevation η(X, t) that satisfy the system of equations (2.8–2.12), at appropriate
values of the dimensionless parameters (2.1). A spectral method is outlined in the next section for determining this
solution in the non-inertial coordinate system (2.6).

3 The basic spectral method

It follows at once from Laplace’s equation (2.8) and the bottom and side conditions (2.9) and (2.10) that the
perturbation potential in the fluid may be represented in the form

�̂(X, y, t) = P0(t) +
M∑

m=1

Pm(t)
cosh(αm(y + β))

cosh(αmβ)
sin

(
αm

(
X − λ

2

))
, (3.1)

where the constants

αm = (2m − 1)π/λ (3.2)

have been defined for convenience. The hyperbolic cosine term in the denominator of (3.1) has been included so
that the Fourier coefficients Pm(t) are quantities of order one, at least for low orders m. This is necessary to avoid
ill-conditioning in the numerical algorithm to follow. The interfacial elevation may similarly be expressed as

η(X, t) = B0(t) +
M∑

m=1

Bm(t) sin

(
αm

(
X − λ

2

))
, (3.3)

with constants αm again given by (3.2). Since only derivatives of the potential are actually required, the initial coef-
ficient P0(t) remains arbitrary, and it is therefore ignored henceforth. The upper limit M of the sums in equations
(3.1) and (3.3) is chosen to be as large as possible.

The solution of this free-surface problem has now been reduced to finding the time-dependent Fourier coefficients
Pm(t) and Bm(t). We use the approach developed by Forbes et al. [24] to derive a system of ordinary differential
equations for these functions. It is convenient to define perturbation velocity components,

Û (X, t) = ∂�̂

∂ X
=

M∑
m=1

αm Pm(t)
cosh(αm(η + β))

cosh(αmβ)
cos

(
αm

(
X − λ

2

))
,

V̂ (X, t) = ∂�̂

∂y
=

M∑
m=1

αm Pm(t)
sinh(αm(η + β))

cosh(αmβ)
sin

(
αm

(
X − λ

2

))
,

(3.4)

along the interface y = η(X, t), and these functions will be used extensively in the following developments.
The contribution to the zeroth-order Fourier mode in the kinematic condition (2.11) is obtained by integrating

the equation over the tank length. Using integration by parts and (3.4) then gives the simple result

B ′
0(t) = 0. (3.5)

It follows that the Fourier coefficient B0(t) in (3.3) is constant; if the motion is regarded as having started from rest,
then its value may be taken to be zero. As with the problem studied by Forbes et al. [24], it is straightforward to
show that (3.5) yields to the fact that the average interface elevation must remain constant, independently of time,
as is required by conservation of mass.
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The contribution from higher-order Fourier modes in the kinematic condition (2.11) is determined by multiplying
by the basis functions sin(αk(X −λ/2)), k = 1, 2, . . . , M and integrating over the tank length. Integration by parts
yields the identity

∫ λ

0
Û

∂η

∂ X
sin

(
αk

(
X − λ

2

))
dX =

∫ λ

0
V̂ sin

(
αk

(
X − λ

2

))
dX − αk

M∑
m=1

Skm Pm(t), (3.6)

after use has been made of the perturbation velocity components (3.4) evaluated on the free surface. The intermediate
functions on the right-hand side of (3.6) are defined as

Skm(t) =
∫ λ

0

sinh(αm(η + β))

cosh(αmβ)
cos

(
αm

(
X − λ

2

))
cos

(
αk

(
X − λ

2

))
dX. (3.7)

In view of the identity (3.6), the decomposition of the kinematic equation (2.11) into higher Fourier modes yields

B ′
k(t) = 2αk

λ

M∑
m=1

Skm Pm(t) k = 1, 2, . . . , M. (3.8)

The dynamic surface condition (2.12) is similarly subjected to Fourier decomposition. The zeroth-order mode
is obtained simply by integration over the tank length, and yields a differential equation from which the derivative
P ′

0(t) of the zeroth-order coefficient in (3.1) can be determined. However, as this quantity is never needed, it can
be set to zero and the Fourier decomposition at zeroth order can simply be ignored.

Higher-order modes are obtained as previously, multiplying by the same basis functions sin(αk(X − λ/2)),
k = 1, 2, . . . , M and integrating over the interval X ∈ (0, λ). After some algebra, the system of ordinary differen-
tial equations

M∑
m=1

Gkm P ′
m(t) = −2ε

α2
k

sin t cos(kπ) − 1
2 Jk(t) − 1

2λBk(t), k = 1, 2, . . . , M, (3.9)

is obtained, in which the further intermediate quantities,

Gkm(t) =
∫ λ

0

cosh(αm(η + β))

cosh(αmβ)
sin

(
αm

(
X − λ

2

))
sin

(
αk

(
X − λ

2

))
dX,

Jk(t) =
∫ λ

0

[
Û 2 + V̂ 2] sin

(
αk(X − λ

2
)

)
dX,

(3.10)

have been defined for convenience.
Equations 3.8 and 3.9 constitute a system of 2M differential equations for the coefficients Pm(t) and Bm(t),

m = 1, 2, . . . , M . This system is non-autonomous, but is instead sinusoidally forced, as is evident from the presence
of the term involving the function sin t on the right-hand side of (3.9). Nevertheless, the system is easily solved
numerically, and we use the standard fourth-order Runge–Kutta method outlined by Atkinson [26, p. 371] to perform
this task. The integrals in (3.7) and (3.10) are evaluated to very high-order accuracy using the composite trapezoidal
rule, since their integrands are periodic; see [26, p. 253]. Accurate solutions are generated using M = 51 Fourier
modes, 201 spatial grid points to evaluate the integrals (3.7) and (3.10), and 151 time steps over each half forcing
period t ∈ [0, π ].

4 Time-periodic solutions and their stability

Many investigators, including Ockendon and Ockendon [7], Hill [9] and Hill and Frandsen [10], for example, have
focussed on the periodic response of the interface to the sinusoidal forcing of the tank. This is able to be determined
here, in the fully nonlinear case, based on the algorithm presented in Sect. 3.
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The most successful method involves an expansion of each time-dependent Fourier coefficient in a further Fourier
series in time. If period Q solutions are sought, with response period 2π Q, then the symmetries of (3.8) and (3.9)
permit the additional Fourier expansions to take the forms

Pm(t) =
N∑

n=1

Pmn cos

(
(2n − 1)t

Q

)
,

Bm(t) =
N∑

n=1

Bmn sin

(
(2n − 1)t

Q

)
m = 1, 2, . . . , M.

(4.1)

An unknown vector u of length 2MN is now created, containing the (constant) coefficients Bmn and Pmn in (4.1).
The system of 2MN nonlinear equations satisfied by these coefficients is found using Fourier decomposition in
time, and may be written
∫ 2π Q

0
Fk cos

(
(2n − 1)t

Q

)
dt = 0,

∫ 2π Q

0
Gk sin

(
(2n − 1)t

Q

)
dt = 0, k = 1, 2, . . . , M, n = 1, 2, . . . , N .

(4.2)

The quantities in the integrands of (4.2) are obtained from the governing differential equations (3.8) and (3.9), and
are given by the expressions

Fk = B ′
k(t) − 2αk

λ

M∑
m=1

Skm Pm(t),

Gk =
M∑

m=1

Gkm P ′
m(t) + 2ε

α2
k

sin t cos(kπ) + 1
2 Jk(t) + 1

2λBk(t),

(4.3)

in which the intermediate expressions are as defined in (3.7) and (3.10).
The unknown vector u containing the 2MN coefficients Bmn and Pmn is updated iteratively, using Newton’s

method to satisfy the system (4.2) of 2MN equations. The integrals in time are evaluated by the composite trap-
ezoidal rule, since it is exponentially accurate for the time-periodic integrands in (4.2). Nevertheless, the Newton
algorithm is demanding of computer time, since the integrands (4.3) involve significant effort to evaluate. The
advantage, however, is that multiple solution branches and even unstable periodic behaviour can be obtained by this
very general approach.

The response amplitude AT of the nonlinear time-periodic solutions is defined in this paper by the relation

A2
T = 2

π Qλ

∫ 2π Q

0
dt

∫ λ

0
dX η2(X, t). (4.4)

When use is made of the expression (3.3) with B0 = 0 and the representation (4.1), the definition (4.4) gives rise to

AT =
√√√√ M∑

m=1

N∑
n=1

(Bmn)
2, (4.5)

after some calculation. This expression (4.5) is easily evaluated using the coefficients computed from Newton’s
method of solution.

Once these time-periodic orbits have thus been found by Newton’s method, their stability can be assessed
relatively easily. Here, a periodic solution is stable if small perturbations decay with time, but unstable if those per-
turbations grow. The combined set of differential equations (3.8) and (3.9) may be regarded as a non-autonomous
dynamical system of the form

V′ = F(t, V), (4.6)

involving the 2M × 1 vector of coefficients

V(t) = [
B1(t), . . . , BM (t); P1(t), . . . , PM (t)

]T
. (4.7)
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If the system of equations (4.6) is integrated over one response period t ∈ [0, 2π Q], using an initial vector V(0) in
(4.7) computed from the coefficients obtained with Newton’s method above, then the same vector V(2π Q) = V(0)

will be obtained at time t = 2π Q, because of the periodicity of the solution (4.1). However, suppose that a new
initial vector V j (0) is created by adding a small quantity ξ to the j-th component of V(0). In component form, this
may be denoted as (Vj )i (0) = Vi (0) + ξδi j in which δi j is the Kronecker delta symbol that has the value 0 if i �= j
and 1 if i = j . If this new perturbed vector is used as the initial condition for the system (4.6) and integrated over
a period, some new vector V j (2π Q) will result. In general, it will differ from the perturbed initial vector, and the
extent to which it does so is a measure of the stability of the solution. This process is repeated for each component
j = 1, 2, . . . , 2M and used to create the 2M × 2M matrix M with components

Mi j = (Vj )i (2π Q) − (Vj )i (0)

ξ
, i, j = 1, 2, . . . , 2M. (4.8)

It may be shown that the matrix M is the monodromy matrix of Floquet theory, if ξ is sufficiently small (strictly,
ξ → 0 in (4.8)), as is detailed by Seydel [8, p. 255]. The eigenvalues of M determine the stability of the periodic
solution computed by Newton’s method. If all eigenvalues have absolute value less than or equal to one, then the
solution is stable; however, the solution becomes unstable if the absolute value of any one eigenvalue exceeds one.
This is portrayed very conveniently in graphical form, since eigenvalues of unit absolute value all lie on a circle of
unit radius in the complex plane. Stable solutions are those for which all the eigenvalues lie within or on the unit
circle, and if any eigenvalue leaves the circle, then the solution becomes unstable.

5 Linear and weakly nonlinear theories

The linearized approximation to the problem presented in Sect. 2 is derived by assuming that the perturbation
potential and the interface elevation can be expanded in powers of the forcing amplitude in the form

�̂(X, y, t) = ε�̂1(X, y, t) + O(ε2), η(X, t) = εH1(X, t) + O(ε2). (5.1)

These expansions (5.1) are substituted in the governing equations and terms are retained to the first order in ε.
It is found that the linearized perturbation potential �̂1 satisfies Laplace’s equation (2.8), although now in the

rectangular linearized fluid region 0 < X < λ, −β < y < 0. This potential also obeys the required conditions
(2.9), (2.10) on the tank boundaries. The linearized kinematic condition (2.11) becomes

∂�̂1

∂y
= ∂ H1

∂t
on y = 0 (5.2)

to the first order in ε, and the corresponding linearized equivalent of the dynamic condition (2.12) is

− X sin t + ∂�̂1

∂t
+ H1 = 0 on y = 0. (5.3)

The solution to this linearized system of equations, subject to the conditions (5.2) and (5.3) on the linearized
surface y = 0, is found in a straightforward manner using separation of variables. As the forcing term is periodic
in time, with period 2π , the appropriate periodic solution is

�̂(X, y, t) = ε cos t
∞∑

m=1

P L
m

cosh(αm(y + β))

cosh(αmβ)
sin

(
αm

(
X − λ

2

))
+ O(ε2),

η(X, t) = ε sin t
∞∑

m=1

BL
m sin

(
αm

(
X − λ

2

))
+ O(ε2),

(5.4)

corresponding to the forms (3.1) and (3.3) assumed for the nonlinear solution. The linearized coefficients in (5.4)
are found to be

P L
m = − 4 cos(mπ) cosh(αmβ)

α2
mλ

[
αm sinh(αmβ) − cosh(αmβ)

] , BL
m = − 4 cos(mπ) sinh(αmβ)

α2
mλ

[
αm sinh(αmβ) − cosh(αmβ)

] , (5.5)
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where the constants αm are as given in (3.2). It follows from the definition (4.4) that the linearized amplitude of the
surface disturbance is

AT = ε

√√√√
∞∑

m=1

(
BL

m

)2 (5.6)

and this forms a valuable point of comparison with the results (4.5) of the fully nonlinear solution.
The linearized solution (5.4), (5.5) shows that resonances occur whenever

tanh(αmβ) = 1

αm
. (5.7)

This is effectively a transcendental equation for the quantity αm in (3.2), and has a unique solution for each value
of the integer m. If the tank is very deep, so that β → ∞, then Eq. (5.7) shows that resonances occur at the values
λ → (2m − 1)π of the tank length, in these dimensionless variables.

Since linearized theory is only valid for small response amplitudes, it is necessarily the case that the solution
(5.4), (5.5) fails for parameter values close to the resonances (5.7). Consequently, Ockendon and Ockendon [7], Hill
[9] and Hill and Frandsen [10] have developed weakly nonlinear theories appropriate to the solution near the first
resonance (at which m = 1 in (5.7)). For completeness, a similar analysis is now presented here, and is relatively
straightforward to perform, in view of the particularly simple form of the ordinary differential equations (3.8) and
(3.9) in the Fourier space, derived in this present formulation.

The interface elevation function in (3.3) is approximated by the monochromatic term

η(X, t) ≈ B11 sin t sin

(
α1

(
X − λ

2

))
= −B11 sin t cos(π X/λ). (5.8)

This form (5.8) is now substituted directly in the governing differential equations in Sect. 3. After some calculation,
and when use is made of an integral identity from [27, Eq. 3.997.2] the intermediate quantity of interest in (3.7)
becomes

S11(t) = λ tanh

(
πβ

λ

)
I1(T )

T
, (5.9)

in which I1 denotes the modified first-kind Bessel function of first order. It is similarly appropriate to approximate
the perturbation potential (3.1) with the single term

�̂(X, y, t) ≈ P11 cos t
cosh (α1(y + β))

cosh(α1β)
sin

(
α1

(
X − λ

2

))
. (5.10)

The perturbation velocity components Û and V̂ in (3.4) are evaluated without further approximation using (5.10)
and (5.8). The relevant intermediate quantities in (3.10) are then obtained in the forms

G11(t) = λ

[
I0(T ) − I1(T )

T

]
, J1(t) = π2

λ
cos2 t (P11)

2 tanh

(
πβ

λ

)
I1(2T ), (5.11)

after somewhat extensive algebra. The quantity T in (5.9) and (5.11) is defined for convenience as

T = π

λ
B11 sin t, (5.12)

and the symbols Iν , ν = 0, 1, denote the modified Bessel function of the first kind, of order ν.
It is sufficient for the present approximation to make use of the results

I0(T ) = 1 + O(T 2), I1(T ) = T/2 + O(T 3)

for the modified Bessel functions, taken from [28, p. 375]. When these expressions are used in (5.9) and (5.11) and
only the terms of the same period 2π as the forcing term are retained, the governing ordinary differential equations
(3.8) and (3.9) become approximately

B11 cos t ≈ π

λ
P11 tanh

(
πβ

λ

)
cos t,

−λ

2
P11 sin t ≈

[
2λ2ε

π2 − π3

8λ2 (P11)
2 B11 tanh

(
πβ

λ

)
− λ

2
B11

]
sin t.

(5.13)
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Fig. 2 a Surface profiles and b Surface curvatures, for a 2π -periodic solution obtained with λ = 5, β = 1 and forcing amplitude
ε = 0.03. Solutions are shown for the three times t = 0, π/2 and 3π/2

Eliminating the constant P11 in the system (5.13) gives rise to the cubic equation

(B11)
3 + 4λ

π

[
tanh

(
πβ

λ

)
− λ

π

]
B11 − ε

16λ2

π3 tanh

(
πβ

λ

)
≈ 0 (5.14)

for the coefficient B11 in (5.8). Observe that the definition (4.4) gives the surface amplitude at this order of approx-
imation to be AT ≈ |B11|, precisely as expected. The cubic (5.14) has either one or three real roots, and predicts
multiple solutions in an interval of tank lengths λ slightly greater than the resonant length obtained from (5.7) with
m = 1. On a plot of response amplitude AT against tank length λ, the weakly nonlinear solution (5.8), (5.14)
therefore predicts a resonance peak bending in the direction of increasing λ, as will be seen in Sect. 6. This is a
resonance peak of the “hardening spring” type; see [8, p. 53].

This weakly nonlinear analysis can be repeated for the other resonances. Near the second resonance, obtained
with m = 2 in (5.7), it is appropriate to seek a solution of the form

η(X, t) ≈ B21 sin t cos(3π X/λ), (5.15)

and after a similar analysis to that above, it is found that the response amplitude B21 satisfies the cubic equation

(B21)
3 + 4λ

3π

[
tanh

(
3πβ

λ

)
− λ

3π

]
B21 + ε

16λ2

27π3 tanh

(
3πβ

λ

)
≈ 0. (5.16)

This analysis predicts a resonance peak bending in the direction of the positive λ-axis, similarly to the result (5.14)
for the first resonance.

6 Presentation of results

This discussion of results begins with a consideration of a time-periodic solution of period 2π , so that Q = 1 in
(4.1) in Sect. 4. Figure 2 illustrates the behaviour of the free surface as a function of time, for a tank of depth β = 1
and length λ = 5, subjected to horizontal forcing of amplitude ε = 0.03.

The free-surface profiles are shown in Fig. 2a at the three times t = 0, π/2 and 3π/2 in the original inertial
reference coordinates (x, y). As the solution is periodic, the surface profile at t = π is identical to the situation
for t = 0 and 2π , after which the cycle simply repeats. The profiles in Fig. 2 are solutions to the full nonlinear
equations, but are nevertheless in close agreement with the predictions of the linearized theory (5.4), (5.5), since
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Fig. 3 The eigenvalues of
the monodromy matrix (4.8)
in the complex plane, for
the periodic solution
presented in Fig. 2 with
λ = 5, β = 1 and ε = 0.03.
The eigenvalues are drawn
with asterisks, and the unit
circle in the complex plane
is shown with a solid line
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this value of tank length λ = 5 is far from resonance. The solution at time t = 3π/2 is essentially the mirror image
of the profile at t = π/2, although translated slightly to the right due to the horizontal motion of the tank, which is
visible in these stationary coordinates.

There is, however, one feature of the nonlinear results in Fig. 2 that is not present in the linearized approximation;
at the tank walls X = 0 and X = λ, the free surface develops very high curvature. This feature may be visible from
the profiles in Fig. 2a, but is easily seen in Fig. 2b. Here, the curvature,

κ = ηX X[
1 + η2

X

]3/2 , (6.1)

at the free surface has been computed from the spectral representation (3.3) and is shown in Fig. 2b at the same
three times t = 0, π/2 and 3π/2. There is an inflexion point at about the centre of the tank, at which the curvature
κ in (6.1) changes sign, but the main feature of the diagram are the large spikes in curvature that form at each
tank wall. It is a strength of the present numerical scheme that accurate values of curvature may be computed,
using exact differentiation of the surface elevation (3.3); nevertheless, in this case, the curvature spikes at each tank
wall pose difficulties for the convergence of the Fourier series (3.3), and have resulted in the small oscillations in
the curvature profile that are visible in Fig. 2b. This is evidence of Gibbs’ phenomenon; see [29, p. 510]. As the
number of Fourier modes in this numerical solution is increased, the sizes of the spikes in curvature remain largely
unaffected, although the frequency of the oscillations caused by Gibbs’ phenomenon increases, and the amplitude
of most of these waves is diminished. These small oscillations in curvature are therefore not representative of the
exact physics, but rather are a consequence of the numerical solution technique. Indeed, any approximation method
for which the error can be represented as a Fourier series can be expected to produce similar oscillations when
computing these curvature spikes.

The stability of the periodic forced solutions in Fig. 2 can be assessed using the analysis of Sect. 4, based on
Floquet theory. The eigenvalues of the monodromy matrix (4.8) have been computed for this case, and are shown
in the complex eigenvalue plane in Fig. 3. This solution was obtained with M = 15 spatial modes and N = 10
temporal harmonics, so that the matrix M in equation (4.8) has 2M = 30 eigenvalues. These all have unit absolute
value (within an error of 0.07%). They are therefore distributed around the circle of unit radius in the complex
plane, and this is also shown in Fig. 3 with a thin solid line. The periodic solution of Fig. 2 is therefore stable in the
sense that small perturbations to it will not grow in time. In fact, since the eigenvalues all have magnitude equal
to one, then the solution is neutrally stable, and so represents a travelling wave, as is to be expected on physical
grounds.

Although the periodic response shown in Fig. 2 is stable to small perturbations, it is nevertheless of interest to
consider the behaviour of the free-surface when the solution is started from a flat interface at rest. This can be
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Fig. 4 a Free-surface profile at the left wall as a function of time, and b Phase-plane diagram for surface height at the left wall. Results
are shown for a solution started from rest, for the case λ = 5, β = 1 and forcing amplitude ε = 0.03

determined easily in the present spectral formulation, simply by integrating the ordinary differential equations (3.8)
and (3.9). The results are shown for this same case in Fig. 4. Here, M = 51 spatial modes were used, and the
solution has been integrated over the interval t ∈ [0, 101π ], representing about 50 forcing periods.

Figure 4a shows the free-surface elevation η at the left-hand edge X = 0 of the tank. The motion is clearly
irregular in both amplitude and phase, and there is no evidence of any approach to the (stable) periodic solution
shown in Fig. 2. As a check, Fig. 4b shows a type of phase-plane plot for this solution, made up of the time deriv-
ative of the surface height at the left edge of the tank plotted against the height. The irregular and non-repeating
nature of this diagram shows that the pattern of behaviour is either quasi-periodic or even fully chaotic in time.
This point is considered again, later in this section. Somewhat similar diagrams to those of Fig. 4 have also been
presented by Frandsen [4] using a finite-difference approach to the nonlinear problem. These results show that,
while the time-periodic solution in Fig. 2 is stable, it may nevertheless not be the outcome that is actually observed,
depending on the starting conditions in the tank.

The time-periodic response of the free surface is analyzed in detail in Fig. 5. Here, the response amplitude is
plotted against the tank length λ, for the case of a tank of depth β = 1 subjected to forcing oscillations of amplitude
ε = 0.03. The results in Fig. 5 in some sense represent the major focus of this paper, and were obtained with 320
separate converged nonlinear periodic solutions at different tank lengths λ, generated using the methods outlined
in Sect. 4. Similar results were produced with the larger forcing amplitude ε = 0.1, but these will not be discussed
here.

The thin solid line in Fig. 5 represents the linearized amplitude computed from (5.5) and (5.6), and 51 Fourier
coefficients were found to give highly converged profiles for this solution. The first two resonances at tank lengths
λ ≈ 2.6187 and λ ≈ 7.8561 are visible as near-vertical sections in the linearized amplitude curve, as predicted from
the result (5.7). The thin dashed lines on this graph correspond to the weakly nonlinear amplitudes |B11| and |B21|
at the first and second resonances, computed from the two cubic equations (5.14) and (5.16), respectively. Finally,
the thick solid lines represent amplitudes AT computed from Newton’s method solution, for the fully nonlinear
problem, using (4.5).

The linearized results give a good description of the nonlinear solution amplitude for small to moderate-sized
waves, as is to be expected. Near the first resonance at λ ≈ 2.6187, however, the nonlinear time-periodic solution
fails, due to the formation of regions of very high curvature at the wave crests, similar to those shown in Fig. 2b.
This strongly suggests that periodic nonlinear solutions are ultimately limited by the formation of points of infinite
curvature at the interface, similar to those encountered by Moore [30] and Cowley et al. [31], at least in the vicinity
of the first resonance.
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The situation near the second resonance at λ ≈ 7.8561 is considerably more interesting. Perhaps the most
surprising feature is that the linearized result gives a remarkably accurate description of the nonlinear periodic
behaviour, even for large-amplitude solutions. By contrast, the weakly nonlinear solution obtained from (5.16)
describes the nonlinear results rather poorly, and is only qualitatively correct in the sense that it predicts that the
amplitude curve bends to the right of the figure, producing multiple solutions for tank length λ greater than the
second resonance value. This poor agreement is likely to be due to the fact that the weakly nonlinear theory (5.16)
comes from a monochromatic representation (5.15), whereas both the linearized and nonlinear solutions make use
of all the Fourier modes. There is also a very narrow region of multiple solutions to the left of the second resonance
point, since the unstable nonlinear solution branch above the point marked “B” actually bends back slightly to the
left, before eventually failing at an amplitude at which the curvature at the free surface becomes extremely large.
These portions of the solution branch were computed using a modification to the Newton-method algorithm of
Sect. 4, in which the response amplitude AT was specified in advance and the forcing amplitude ε was obtained as
an unknown.

To the right of the second resonance, the fully nonlinear solution develops four separate solution branches, and
these are visible in Fig. 5. The solution branch with smallest amplitude to the right of the resonance peak is stable,
but the other three branches are all unstable. Careful analysis of the Jacobian matrix in Newton’s method, in addition
to stability considerations of the various solution branches, indicates that the two points labelled “A” and “B” on the
figure are points of genuine bifurcation (at which the Jacobian determinant changes sign). This second resonance
is therefore considerably more complex in structure than the weakly nonlinear analysis (5.16) allows; it has more
in common with the structure shown in Fig. 4 of the paper by Amundsen et al. [13], although that analysis did
not predict the bifurcation points. The experimental results shown in [6, Fig. 17] likewise demonstrate comparable
behaviour near the second resonance. There is another point slightly to the right of point “B” in Fig. 5 at which the
solution branches appear to cross. This, however, is not a bifurcation, since neither the sign of the determinant of
the Jacobian nor the stability of the branches changes as this point is traversed.

It is now appropriate to examine in more detail the various periodic nonlinear solutions that have been summa-
rized in Fig. 5. First a branch of solutions is shown in Fig. 6 at the tank length λ = 2, which represents the solutions
at the extreme left hand side of Fig. 5. Here, the amplitude AT of the nonlinear solution is shown against the forcing
amplitude ε of the tank oscillations. In this diagram, the tank depth is again β = 1.
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Fig. 5 The dependence of the response amplitude AT on the
tank length λ, for a tank of depth β = 1 and subject to forc-
ing amplitude ε = 0.03. The linearized solution is shown with
a thin solid line, the dashed lines are the predictions of the
weakly nonlinear theory, and the heavy solid line shows the
fully nonlinear solution. Stable solutions are marked “s” and
unstable are denoted “u”
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Fig. 6 The dependence of the response amplitude AT on the
forcing amplitude ε, for a tank of length λ = 2 and depth β = 1
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Fig. 7 a Surface profiles and b Surface curvatures, for a 2π -periodic solution obtained with λ = 2, β = 1 and forcing amplitude
ε = 0.07. Solutions are shown for the three times t = 0, π/2 and 3π/2

Figure 6 is at first an unremarkable diagram, as it merely shows that the response amplitude AT essentially just
increases linearly with forcing amplitude ε, as might be anticipated from the linearized solution. However, this
branch of nonlinear periodic solutions eventually fails at about ε = 0.07. In addition, it loses stability at some
forcing amplitude at about ε = 0.04, so that there is a bifurcation that occurs at this amplitude. These two features
of the solution branch in Fig. 6 are now investigated in more detail.

Figure 7a shows the free-surface profile at the three times t = 0, π/2 and 3π/2, for tank length λ = 2 and depth
β = 1, at the forcing amplitude ε = 0.07. This is, in fact, the largest amplitude to which the solution branch in
Fig. 6 could be continued, and attempts to increase it beyond this value were not successful. Clearly some limiting
configuration is being approached in this solution, and the Newton algorithm took 63 iterations to converge in this
case.

Nevertheless, the solution profiles in Fig. 7a appear unremarkable, and a very similar result is obtained simply
using the linearized approximation of Sect. 5. To see the reason for the failure of the solution branch in Fig. 6 at
the amplitude ε = 0.07 depicted in Fig. 7a, it is necessary to examine the curvature, and this is again computed
with good reliability using (6.1) and (3.3). The free-surface curvature is shown for this case in Fig. 7b. Clearly the
curvature takes very large values at the two walls at X = 0 and X = λ, and these results strongly suggest that
the limiting configuration involves infinite curvature at the tank walls. As with Fig. 2b, there are small spurious
oscillations in the curvature profile shown in Fig. 7b, and these are evidence of Gibbs’ phenomenon, caused by the
presence of the large spikes in curvature at the tank walls.

As indicated previously, the solution branch in Fig. 6 changes from stable at small amplitudes to unstable at
larger amplitudes, and this is studied in more detail in Fig. 8. For ε = 0.03, as in Fig. 5, the nonlinear periodic
solution is stable, and the eigenvalues of the monodromy matrix (4.8) are shown in Fig. 8a. The unit circle is also
drawn on this diagram, and it is found that the eigenvalues all lie on this circle to within an error of 0.04%. This
represents a very sensitive test on the accuracy of the numerical techniques outlined in this paper, and shows that
this solution at ε = 0.03 is clearly stable.

By contrast, the solution in Fig. 7 obtained with forcing amplitude ε = 0.07 is unstable, and its eigenvalues are
shown in Fig. 8b. This diagram gives some insight into the mechanism by which the solution has become unstable,
since although most of the eigenvalues of the monodromy matrix are still clustered around the unit circle, a complex
conjugate pair has moved beyond the circle. Their absolute values exceed one, and so they are responsible for the
instability. Furthermore, the angle at which they exit the unit circle has been monitored, and is not obviously a
rational fraction of π radians (the complex conjugate pair of eigenvalues outside the unit circle in Fig. 8b makes
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Fig. 8 Eigenvalues of the monodromy matrix (4.8) in the complex plane, for the periodic solution obtained with length λ = 2 and
depth β = 1, for a Forcing amplitude ε = 0.03 and b Forcing amplitude ε = 0.07

an angle π/2.6149 to the real axis). This strongly suggests that the branch of solutions in Fig. 6 loses its stability
at about ε = 0.04 through a quasi-periodic bifurcation. Once such a quasi-periodic solution has been produced
by this mechanism, it is likely to undergo a further Ruelle–Takens–Newhouse bifurcation to chaos, as outlined for
example, by Seydel [8, p. 339]. An example of such irregular solution behaviour has already been encountered in
Fig. 4.

The four separate periodic solution branches produced by the second resonance in Fig. 5 are now studied in more
detail. Figure 9 shows the response amplitude AT for these solutions, as functions of the forcing amplitude ε, for
tank length λ = 9. The tank depth is again β = 1. This diagram summarizes the results of 162 separate converged
solutions obtained with the Newton algorithm of Sect. 4. In the following discussion, these four solution types will
be referred to as Branches 1 to 4, numbered from the bottom of Fig. 5 upwards. Thus the solution at λ = 9 in
Fig. 5 of smallest amplitude is referred to as Branch 1, and it is stable. Its behaviour in Fig. 9 is very similar to the
corresponding solution for λ = 2 shown in Fig. 6; its amplitude increases essentially linearly with forcing amplitude
ε until it fails at about ε = 0.122. For this limiting configuration, the curvature becomes very large at the tank walls.
Unlike the situation in Fig. 6, however, the Branch 1 solution in Fig. 9 does not lose its stability as ε is increased,
but remains stable throughout.

The development of the three unstable solution Branches 2–4 with increasing forcing amplitude ε is also shown
in Fig. 9. Perhaps the feature of greatest interest is the fact that Branches 2 and 3 are both seen to emerge from
the same point (ε, AT ) = (0, 0.370751), indicating that they both bifurcate from the same unstable standing wave
solution. The Branch 4 solution (which emanates from the point labelled “B” in Fig. 5) is also seen in Fig. 9 to have
arisen from a standing wave solution with (ε, AT ) = (0, 0.452328). Branches 3 and 4 appear to cross over at about
ε = 0.1 in Fig. 9 since their response amplitudes become equal there. Nevertheless, this is not a genuine bifurcation,
since there is no change in sign of the determinant in Newton’s method nor any exchange of stability there.

Figure 10 shows the solution profile for the Branch 1 solution at forcing amplitude ε = 0.03 and tank length
λ = 9 (as in Fig. 5). The solution is shown at the three times t = 0, π/2 and 3π/2, after which time the pattern
simply repeats with 2π -periodicity in time. This is very similar to the corresponding linearized solution at the same
parameter values, except for the small regions of moderately high curvature near the tank wall, which may be visible
from Fig. 10.

Profiles for the remaining three Branches 2–4 are shown in Fig. 11. Each of these solutions is unstable, as is
perhaps to be expected from the small wavelets present in each profile. Analysis of the monodromy matrix shows
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Fig. 10 Surface profiles for Branch 1, for 2π -periodic solu-
tions obtained with λ = 9, β = 1 and forcing amplitude ε =
0.03. Solutions are shown for the three times t = 0, π/2 and
3π/2

that there is at least one eigenvalue of very large magnitude, so that each of these solutions is so highly unstable that
it would not ever be seen in practice. Nevertheless, these periodic solutions are a product of nonlinear behaviour at
the second resonance, and it is necessary to compute them in order to understand fully the resonant behaviour of
sloshing motion in a tank, such as the abrupt termination of the stable branch of solutions at the point B in Fig. 5.

7 Conclusion and discussion

A theoretical analysis of two-dimensional horizontal forcing of a rectangular tank containing an ideal fluid has been
presented. A novel spectral method introduced by Forbes et al. [24] has been employed, generalizing the technique
of Faltinsen et al. [21]; it allows both irregular time-dependent evolution of the surface and regular periodic solu-
tions to be computed. Stability is determined in this spectral approach using Floquet theory, which also serves as a
sensitive check on the accuracy of the solutions computed with this technique. It is found that the nonlinear solutions
that correspond to the linearized periodic solutions are neutrally stable, as befits travelling waves. However, the
nonlinear resonances may also give rise to other unstable solution branches, so that multiple solutions are possible
in certain parameter regions. An example has been presented of four different solutions all at the same parameter
values.

The spectral Galerkin approach of the present paper is also well suited to use in the derivation of weakly nonlinear
theories. It is found, however, that these give only a poor, qualitative, description of the sloshing behaviour near
resonance, presumably since they only make use of one Fourier mode. Fully nonlinear results have been presented
for the first two resonances, and the second resonance, in particular, has been shown to have a complex structure
not unlike that found experimentally by Chester and Bones [6].

Irregular solutions, as described by Chester and Bones [6] and computed by Frandsen [4], have been obtained
here using the present spectral technique. Evidence has been presented that such solutions can arise through quasi-
periodic bifurcations from a stable periodic solution, as the forcing amplitude is increased. It is then highly likely that
further increases of the amplitude will lead directly to chaos through the mechanism of Ruelle–Takens–Newhouse
bifurcation. From a pragmatic point of view, the differences between a quasi-periodic and a fully chaotic solution
are not of great significance, since both give free-surface behaviour that is highly irregular. Deciding between these
two solution behaviours was therefore not of interest here, but might be determined using Lyapunov exponents or
other techniques if desired; this is outside the scope of interest of the present investigation.
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Fig. 11 Surface profiles for a Branch 2, b Branch 3 and c Branch 4, for 2π -periodic solutions obtained with λ = 9, β = 1 and forcing
amplitude ε = 0.03. Solutions are shown for the two times t = 0 and π/2

As viscosity has been ignored in these solutions, it is found that the various solution branches are often limited
by the formation of points of infinite curvature at the interface. This usually occurs at the tank walls. A further
advantage of this novel spectral technique is that it allows curvature, normally a difficult quantity to compute, to
be obtained in a straightforward manner, and usually with high accuracy. Near the limiting solution configurations,
when curvature becomes very large at selected points, small oscillations appear in the curvature profiles, as a man-
ifestation of Gibbs’ phenomenon. These inviscid curvature singularities are known in other contexts through the
work of Moore [30] and Cowley et al. [31], for example. They occur near the first resonance, preventing the non-
linear solution from exhibiting the exotic behaviour observed at the second resonance. In an attempt to explore the
structure of the first resonance, surface tension was added into the formulation of the problem, but was not found to
make any significant difference to the results, and so has not been discussed in this paper. Future work that includes
the effects of viscosity may possibly show that these points of large curvature in the inviscid problem could trigger
over-turning of the free surface in the viscous case, similar to the situation that occurs with the Rayleigh–Taylor
instability [32].

Period-doubled and higher-period solutions have been sought with this technique, and in principle can be com-
puted simply by choosing the integer Q > 1 in (4.1). Obtaining such solutions, however, is a somewhat serendipitous
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affair, as it relies on having an initial guess in the Newton method algorithm that can give convergence to a genuine
high-period solution. To date, no such solutions have been found. Nevertheless, it is to be expected that they will
occur in the present problem, associated with regions of chaos. However, they are likely to occur only in narrow
bands of certain parameter values.
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